APPENDIX B RUNWAY LENGTH ANALYSIS

TABLE OF CONTENTS

Appendix B Runway Length Analysis

1.1	Intro	oduction	B-1
1.2	Run	way Length Requirements For Airport Design	B-1
1.2	2.1	Step 1 - Identification of Critical Design Aircraft	В-2
1.2	2.2	Step 2 – Aircraft Requiring the Longest Runway Length at MTOW	В-6
1.2	2.3	Step 3 – Airplane Weight Categorization for Runway Length Requirements	В-6
1.2	2.4	Step 4 – Select Recommended Runway Length	В-9
1.2	2.5	Step 5 – Apply Necessary Adjustments	B-12
1.3	Corr	esponding Verification	B-13
1.3	3.1	Flight Tracking	B-13
1.3	3.2	Operator Surveys	B-15
1.4	Reco	ommended Runway Length	B-18

LIST OF TABLES

Table 1	10-Year Turbojet Fleet Mix	. B-4
Table 2	Airplane Weight Categorization for Runway Length Requirements	. B-7
Table 3	75 Percent of Fleet MIX	. B-8
Table 4	100 Percent of Fleet MIX	. B-8
Table 5	75 Percent Fleet Mix Unadjusted Runway Length	B-10
Table 6	100 Percent Fleet Mix Unadjusted Runway Length	B-11
Table 7	Unadjusted Runway Length	B-12
Table 8	Critical Design Aircraft for Runway Length Recommendations	B-13

LIST OF FIGURES

Figure 1	75 Percent Fleet Mix at 60 and 90 Percent Useful load	B-10
Figure 2	100 percent of the Fleet at 60 and 90 Percent Useful Load	B-11
Figure 3	CL60 Trip: HEF to BGR to FAB/EGLF	B-14
Figure 4	GLF5 Trip: HEF to IAD to ATH/LGAV	B-14
Figure 5	Chanitilly Air – HEF Runway Length Survey	B-16
Figure 6	FlightWorks – HEF Runway Length Survey	B-17
Figure 7	Runway 16L-34R: 6,800 FT Length	B-20

1.1 INTRODUCTION

Airplanes today operate in a variety of different environments and available field lengths. However, the suitability of those runway lengths is governed by the existing and forecast fleet mix, critical aircraft operational requirements, and the following variables:

- Airport elevation above mean sea level
- Mean maximum temperature
- Wind velocity
- Aircraft operating weights
- Takeoff and landing flap settings
- Effective runway gradient
- Runway surface conditions (dry, wet, contaminated, etc.)
- Operational use
- Presence of obstructions within the vicinity of the approach and departure path, and
- Locally imposed noise abatement restrictions and/or other prohibitions

The runway system at HEF is comprised of Runway 16R-34L with a length of 3,715 feet and Runway 16L-34R with a length of 6,200 feet. A runway length analysis was conducted for 16R-34L and found the existing length of 3,715 feet was adequate to accommodate critical aircraft operations operating on the runway during the planning period. According to FAA guidance, Advisory Circular 150/5325-4B, Runway Length Requirements for Airport Design, the "design objective for a primary runway is to provide a runway length for all airplanes that will regularly use it without causing operational weight restrictions".

Given FAA guidance and an initial runway length analysis, Runway, 16L-34R, was selected as the primary runway to accommodate aircraft types operating at HEF. Justification for any runway length to meet the needs of turbine aircraft would require regular use on the order of a minimum of 500 annual itinerant operations. The suitability of available runway length at HEF was previously evaluated in the FAA approved 2002 Master Plan Update. Based upon the critical aircraft at the time, Learjet 60, a runway length between 6,400 and 6,500 feet was recommended. Despite the results of the runway length analysis, the City of Manassas elected to pursue a 500-foot extension providing a length of 6,200 feet as depicted on the ALP at the time.

To evaluate the length of Runway 16L-34R, it was necessary to determine the future critical aircraft's runway length requirements in the absence of weight restrictions based on the FAA runway design criteria outlined in FAA AC 150/5325-4B – *Runway Length Requirements for Airport Design*.

1.2 RUNWAY LENGTH REQUIREMENTS FOR AIRPORT DESIGN

Advisory Circular 150/5325-4B provides the following five-step process to determine runway length requirements associated with the airport's existing and future critical aircraft. The five steps include:

- 1. Identify the list of critical design aircraft that will make regular use of the proposed runway for an established period of at least five years.
- 2. Identify airplanes or family of airplanes that will require the longest runway lengths at maximum certified takeoff weight (MTOW).
- 3. Using Table 1-1 of AC 150/5325-4B and the airplanes identified in Step #2, determine the method that will be used for establishing the recommended runway length based upon useful load and service needs of critical design aircraft or family of aircraft.
- 4. Select the recommended runway length from among the various runway lengths generated in Step 3 using the process identified in Chapters 2, 3 or 4 of the Advisory Circular, as applicable.
- 5. Apply any necessary adjustment (i.e. pavement gradient, pavement conditions, etc.). Based upon this methodology, runway length requirements for Runway 16L-34R was determined.

1.2.1 Step 1 - Identification of Critical Design Aircraft

The AC provides the definition of critical design airplanes as the "listing of airplanes (or a single airplane) that would result in the longest recommended runway length". Therefore, to complete Step 1, the FAA approved Aviation Activity Forecast and specific aircraft operations were assessed to develop a ten-year turbojet fleet mix.

For the purpose of this analysis, the following assumptions were made based upon information obtained from users and historical data:

- 1. The airport will continue to be classified as a general aviation reliever airport for Washington Dulles International Airport (IAD).
- 2. The number of ultra high-net worth individuals is expected to grow at rates exceeding those of previous years, creating new entrants into the market that can purchase a business jet or charter a flight. The business jet market is also being driven by a growing interest in long-range travel as borders continue to open around the world, with large jets offering the opportunity to fly further.¹
- 3. Larger business-jet operations at HEF will continue to grow as forecasted in the Aviation Activity Forecast and aligns with the FAA's Terminal Area Forecast as total operations at tower airports are forecasted to grow.
- HEF's historic jet fleet mix for 2021 operations provided the baseline data for the types and frequency of operations (**Table 1**). Average annual turbojet operations growth of 2.9% aligns with the FAA Aerospace Forecast 2022-2042.²
- 5. The more demanding aircraft currently operating at HEF incur operational constraints. There is evidence that some aircraft carry less than desirable fuel, passengers, payload, etc. to effectively

¹ Business Airport International; How Large Cabin Bizjets are Driving Change in Business Aviation: https://www.businessairportinternational.com/features/how-an-increasing-demand-for-larger-cabin-bizjets-is-driving-changes-inaircraft-design.html

² FAA Aerospace Forecast Fiscal Years 2022-2042:

https://www.faa.gov/sites/faa.gov/files/2022-06/FY2022_42_FAA_Aerospace_Forecast.pdf

operate on the primary runway on higher temperature days. See **Section 1.3.2 – Operator Surveys** which substantiates these operations.

TABLE 1 10-YEAR TURBOJET FLEET MIX

Turbojet										Year	
ICAO Code	Aircraft Name	AAC-ADG	мтоw	2019	2020	2021	2022	2023	2024	2025	2026
C25B	Citation CJ3	B-II	13,870	419	254	464	478	492	507	522	538
E55P	Phenom 300	B-II	17,968	208	141	400	412	424	437	450	464
CL60	Challenger 601/650	C-II	48,200	421	306	360	371	382	394	406	418
C525	Citation CJ1	B-I	10,600	310	217	326	336	346	357	368	379
C56X	Citation Excel	B-II	20,000	261	170	252	260	268	276	285	294
LJ60	Learjet 60	C-I	22,750	196	163	246	254	262	270	278	287
CL30	Challenger 300	B-II	38,850	239	186	242	250	258	266	274	282
C560	Citation Encore	B-II	16,830	240	124	232	239	246	254	262	270
C550	Citation II	B-II	14,800	306	174	230	237	244	252	260	268
H25B	Hawker 800	C-II	28,000	261	151	220	227	234	241	248	256
E50P	Phenom 100	B-I	10,582	510	132	214	221	228	235	242	250
BE40	Beechjet 400	B-I	15,780	240	201	200	206	212	219	226	233
GLF4	Gulfstream IV/ G450	D-II	73,900	245	116	198	204	210	217	224	231
FA50	Falcon 50	B-II	40,780	130	101	178	184	190	196	202	208
C510	Citation Mustang	B-I	8,645	195	105	170	175	181	187	193	199
LJ45	Learjet 45	C-I	21,500	127	49	152	157	162	167	172	177
SF50	SF50 Vision Jet	A-I	6,000	95	109	152	157	162	167	172	177
C68A	Citation Latitude	B-II	30,800	163	73	126	130	134	138	143	148
C750	Citation X	B-II	36,100	87	75	114	118	122	126	130	134
F900	Falcon 900 EX	B-II	49,000	149	47	108	112	116	120	124	128
C501	Citation I	B-I	11,850	68	63	100	103	106	110	114	118
PC24	Pilatus PC-24	A-II	18,000	21	65	88	91	94	97	100	103
C680	Citation Sovereign	B-II	30,300	102	54	88	91	94	97	100	103
CL35	Challenger 350	C-II	40,600	89	52	86	89	92	95	98	101
E135	Embraer ERJ-135	C-II	41,888	77	84	84	87	90	93	96	99
GLF5	Gulfstream V/G500	C-III	90,500	52	35	80	83	86	89	92	95
F2TH	Falcon 2000/EX	B-II	42,400	186	41	80	83	86	89	92	95
C25A	Citation CJ2	B-II	12,300	104	49	78	81	84	87	90	93
EA50	Eclipse 500	A-I	5,950	105	43	72	75	78	81	84	87
HDJT	Honda Jet	B-I	9,038	73	50	66	68	70	73	76	79
C25C	Citation CJ4	B-II	17,110	51	42	66	68	70	73	76	79
PRM1	Beech 390 Premier I	B-I	12,500	38	15	62	64	66	68	70	73
E545	Embraer Legacy 450	B-II	35,759	18	14	62	64	66	68	70	73
G150	Gulfstream G150	C-II	26,100	29	6	54	56	58	60	62	64
LJ75	Learjet 75	C-II	21,500	52	16	34	35	37	39	41	43
GLF3	Gulfstream III	C-II	69,700	48	47	34	35	37	39	41	43
LJ35	Learjet 35	D-I	18,000	25	21	32	33	34	35	37	39
C650	Citation III	C-II	22,000	64	13	32	33	34	35	37	39

2027	2028	2029	2030	2031
554	571	588	606	624
478	492	507	522	538
431	444	457	471	485
390	402	414	427	440
303	312	322	332	342
296	305	314	324	334
291	300	309	318	328
278	287	296	305	314
276	285	294	303	312
264	272	280	289	298
258	266	274	282	291
240	247	255	263	271
238	245	253	261	269
215	222	229	236	243
205	211	218	225	232
183	189	195	201	207
183	189	195	201	207
153	158	163	168	173
138	143	148	153	158
132	136	140	145	150
122	126	130	134	138
106	110	114	118	122
106	110	114	118	122
104	108	112	116	120
102	105	109	113	117
98	101	104	108	112
98	101	104	108	112
96	99	102	105	109
90	93	96	99	102
82	85	88	91	94
82	85	88	91	94
76	79	82	85	88
76	79	82	85	88
66	68	70	73	76
45	47	49	51	53
45	47	49	51	53
41	43	45	47	49
41	43	45	47	49

G280	Gulfstream G280	C-II	39,600	18	17	32	33	34	35	37	39
GLEX	Global 6000/Express	B-III	99,500	8	8	30	31	32	33	34	35
ASTR	Astra 1125	C-II	35,650	49	24	30	31	32	33	34	35
C25M	Citation M2	B-I	10,700	74	76	28	29	30	31	32	33
C55B	Citation Bravo	B-II	14,800	7	10	22	23	24	25	26	27
LJ40	Learjet 40	C-I	21,000	10	4	20	21	22	23	24	25
FA20	Falcon 2000/EX	B-II	28,660	21	4	20	21	22	23	24	25
GLF6	Gulfstream G650	D-III	99,600	3	0	20	21	22	23	24	25
LJ31	Learjet 31	C-I	15,500	47	13	18	19	20	21	22	23
GALX	Galaxy 1126	D-II	35,650	42	14	18	19	20	21	22	23
LJ55	Learjet 55	C-I	19,500	9	16	16	17	18	19	20	21
C700	Citation Longitude	B-II	39,500	0	4	16	17	18	19	20	21
GA6C	G600	D-III	91,600	0	2	16	17	18	19	20	21
FA10	Falcon 10	B-I	18,740	33	8	12	13	14	15	16	17
E550	Embraer Legacy 500	C-II	38,360	7	7	10	11	12	13	14	15
CRJ2	CRJ-200	C-II	53,000	12	5	8	9	10	11	12	13
FA7X	Falcon 7X	B-III	70,000	17	9	6	7	8	9	10	11
LJ70	Learjet 70	C-II	21,750	4	4	6	7	8	9	10	11
H25C	Hawker 1000	B-I	31,100	8	11	6	7	8	9	10	11
GL5T	Global 5000	B-III	92,500	12	8	6	7	8	9	10	11
SBR1	Z-143	B-I	20,000	51	18	4	5	6	7	8	9
E145	Embraer ERJ-145	C-II	48,480	0	2	4	5	6	7	8	9
E190	Embraer 190	C-III	105,359	3	1	4	5	6	7	8	9
H25A	Bae HS 125	C-I	20,503	0	3	4	5	6	7	8	9
WW24	1124 Westwind I	C-I	23,500	11	14	2	3	4	5	6	7
GL7T	Global 7500	B-III	106,250	0	0	2	3	4	5	6	7
LJ25	Learjet 25	C-I	15,000	0	0	2	3	4	5	6	7
LJ24	Learjet 24	C-I	13,000	0	0	2	3	4	5	6	7
Total				6,450	3,886	6,146	6,359	6,575	6,802	7,034	7,273

Source: FAA Offload Data ; RS&H Analysis

41	43	45	47	49
37	39	41	43	45
37	39	41	43	45
34	35	37	39	41
28	29	30	31	32
26	27	28	29	30
26	27	28	29	30
26	27	28	29	30
24	25	26	27	28
24	25	26	27	28
22	23	24	25	26
22	23	24	25	26
22	23	24	25	26
18	19	20	21	22
16	17	18	19	20
14	15	16	17	18
12	13	14	15	16
12	13	14	15	16
12	13	14	15	16
12	13	14	15	16
10	11	12	13	14
10	11	12	13	14
10	11	12	13	14
10	11	12	13	14
8	9	10	11	12
8	9	10	11	12
8	9	10	11	12
8	9	10	11	12
7,519	7,773	8,034	8,304	8,578

1.2.2 Step 2 – Aircraft Requiring the Longest Runway Length at MTOW

Step 2 of FAA AC 150/5325-4B states: "identify the airplanes that will require the longest runway length at maximum certificated takeoff weight (MTOW). The methodology found in this step is based on the MTOW of the aircraft types operating on a regular basis (minimum of 500 annual operations). **Table 1** provides the fleet mix operations forecast and MTOW. The Advisory Circular groups aircraft into three weight categories"

- Small aircraft MTOW 12,500 pounds or less. Aircraft in this category can range from ultralight to small turboprop aircraft. Aircraft within the small aircraft category were not evaluated as the runway lengths at HEF allow these aircraft to takeoff at MTOW without weight restrictions.
- Large aircraft MTOW over 12,500 pounds but less than 60,000 pounds. This group is further categorized by "75 percent of fleet" and "100 percent of fleet". The Challenger 300, Citation Excel, and Citation I are small and mid-size business jets within the "75 percent of fleet" category which operate at HEF. Aircraft in the "100 percent of fleet" category operating at HEF include the Citation X, Learjet 60 and Falcon 900.
- Individual large Airplanes MTOW over 60,000 pounds. When MTOW of the operating aircraft is over 60,000 pounds, the recommended runway length is determined by referencing performance charts in each airplane manufacturer's Airport Planning Manual (APM).

The fleet mix depicted in **Table 1** confirms the majority of jet aircraft operating at HEF fall within large aircraft category with a MTOW over 12,5000 pounds but less than 60,000 pounds.

1.2.3 Step 3 – Airplane Weight Categorization for Runway Length Requirements

Step 3 of FAA AC 150/5325-4B directs airport sponsors to use Table 2 and the airplanes identified in Step 2 to determine the method that will be used for establishing the recommended runway length. The required runway length will be determined by a family grouping of large airplanes as determined by charts within the guidance.

TABLE 2 AIRPLANE WEIGHT CATEGORIZATION FOR RUNWAY LENGTH REQUIREMENTS

Airplane Weight Category Maximum Certificated Takeoff Weight (MTOW)			Design Approach	Location of Design Guidelines		
12,500 pounds (5,670 kg) or less	Approach Speeds less than 30 knots				Family grouping of small airplanes	Chapter 2; Paragraph 203
	Approach Speeds of at least 30 knots but less than 50 knots		30 knots but less than 50		Family grouping of small airplanes	Chapter 2; Paragraph 204
	Approach Speeds of 50 knots or	With Less than 10 Passengers	Family grouping of small airplanes	Chapter 2; Paragraph 205 Figure 2-1		
	more	With 10 or more Passengers	Family grouping of small airplanes	Chapter 2; Paragraph 205 Figure 2-2		
	Over 12,500 pounds (5,670 kg) but less than 60,000 pounds (27,200 kg)			Chapter 3; Figures 3-1 or 3-2 ¹ and Tables 3-1 or 3-2		
60,000 pounds (27,200 kg) or more or Regional Jets ²			Individual large airplane	Chapter 4; Airplane Manufacturer Websites (Appendix 1)		

Note¹: When the design airplane's APM shows a longer runway length than what is shown in figure 3-2, use the airplane manufacturer's APM. However, users of an APM are to adhere to the design guidelines found in Chapter 4.

Note²: All regional jets regardless of their MTOW are assigned to the 60,000 pounds (27,200 kg) or more weight category.

Source: FAA AC 150/5325-4B, Runway Length Requirements for Airport Design

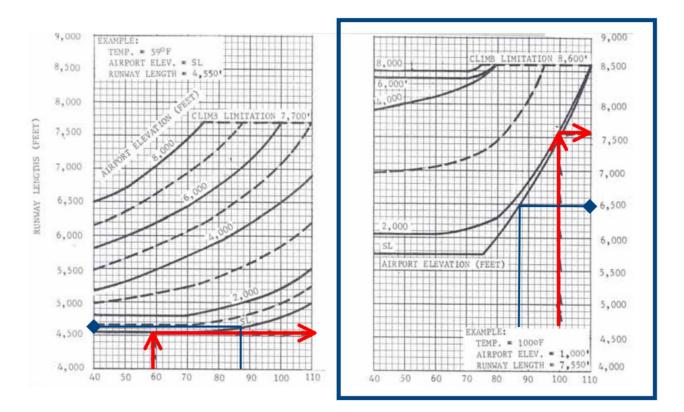
To determine the proper runway length for aircraft that have a greater MTOW than 12,500 pounds but less than 60,000 pounds, and are not regional jets, airport sponsors group similar aircraft together based on performance characteristics and operating weights. This grouping of aircraft is referred to as a family. The runway length recommended for this type of aircraft is then determined based on this family grouping. For this size of aircraft, FAA guidance groups them into the "75 percent fleet" and "100 percent fleet" mix. The breakdown of these aircraft operating at HEF over the next five years is divided into each of these groups in Table 3 and Table 4.

TABLE 3 75 PERCENT OF FLEET MIX

					Ye	ar		
Aircraft Name	AAC-ADG	MTOW	2021	2022	2023	2024	2025	2026
Beechjet 400	B-I	15,780	200	206	212	219	226	233
Citation I	B-I	11,850	100	103	106	110	114	118
Beech 390 Premier I	B-I	12,500	62	64	66	68	70	73
Citation M2	B-I	10,700	28	29	30	31	32	33
Falcon 10	B-I	18,740	12	13	14	15	16	17
Citation Excel	B-II	20,000	252	260	268	276	285	294
Challenger 300	B-II	38,850	242	250	258	266	274	282
Citation Encore	B-II	16,830	232	239	246	254	262	270
Falcon 50	B-II	40,780	178	184	190	196	202	208
Citation Sovereign	B-II	30,300	88	91	94	97	100	103
Falcon 2000/EX	B-II	28,660	20	21	22	23	24	25
Citation Latitude	B-II	30,800	126	130	134	138	143	148
Citation Bravo	B-II	14,800	22	23	24	25	26	27
Learjet 45	C-I	21,500	152	157	162	167	172	177
Learjet 40	C-I	21,000	20	21	22	23	24	25
Learjet 31	C-I	15,500	18	19	20	21	22	23
Challenger 350	C-II	40,600	86	89	92	95	98	101
Citation III	C-II	22,000	32	33	34	35	37	39
Learjet 35	D-I	18,000	32	33	34	35	37	39
75% Fle	et Mix Total		1,902	1,965	2,028	2,094	2,164	2,235

TABLE 4100 PERCENT OF FLEET MIX

					Ye	ar		
Aircraft Name	AAC-ADG	MTOW	2021	2022	2023	2024	2025	2026
Hawker 1000	B-I	31,100	6	7	8	9	10	11
Citation X	B-II	36,100	114	118	122	126	130	134
Falcon 900 EX	B-II	49,000	108	112	116	120	124	128
Falcon 2000/EX	B-II	42,400	80	83	86	89	92	95
Learjet 60	C-I	22,750	246	254	262	270	278	287
Learjet 55	C-I	19,500	16	17	18	19	20	21
Challenger 601/604/605/650	C-II	48,200	360	371	382	394	406	418
Hawker 800	C-II	28,000	220	227	234	241	248	256
Astra 1125	C-II	35,650	30	31	32	33	34	35
Galaxy 1126	D-II	35,650	18	19	20	21	22	23
100% Fleet Mix	Total		1,198	1,239	1,280	1,322	1,364	1,408


1.2.4 Step 4 – Select Recommended Runway Length

According to this analysis, the airport experienced 1,902 operations in the 75 percent fleet mix in 2021 with a projected 2,235 operations by 2026. The airport experienced 1,198 operations in the 100 percent fleet mix in 2021 with a projected 1,408 operations by 2026.

The 75 percent fleet mix contains most of the aircraft operations in 2021 and the forecasted five years. The aircraft that require the longest runway lengths at MTOW are in the 100 percent fleet mix. Therefore, the 75 percent fleet mix and 100 percent fleet mix were analyzed to determine the required runway length. The recommended length for 75 percent and 100 percent groups of airplanes is found in Chapter 3 of FAA AC 150/5325-4B – specifically in Figure 3-1 and Figure 3-2 respectively.

The 75 percent fleet mix and 100 percent fleet mix are further divided by a 60 percent useful load and 90 percent useful load. For the aircraft to operate with a lower useful load (60 percent), either the aircraft must operate at a lighter takeoff weight, requiring less cargo and passengers, or the aircraft must fly shorter distances in order to operate with a lower useful load. Consequently, aircraft operating with a 60 percent useful load, would be restricted to a limited number of markets before having to stop for refueling at a certain point in the journey. From operator surveys conducted on-airport (results of which are shared in Section 2.3.2) and flight tracking software, there is evidence confirming the existing runway length has resulted in payload restrictions during takeoff and flying shorter distances to refuel. The business aviation market in the DC area is experiencing significant growth, accompanied by a notable increase in flights exceeding 1,000 NM out of HEF. This trend suggests that business jet operations requiring a higher useful load of 90 percent will continue to increase in the planning period. Consequently, the analysis of runway length is best suited for the 90 percent useful load curve, making it the most suitable approach. Research conducted in this Master Plan update showed that this ability is necessary to meet the needs of the aircraft using HEF over the next 20-years and will also allow for flexibility in the GA fleet to serve larger aircraft. As noted in the Inventory and Facility Requirement Chapter the mean maximum temperature at the airport is 87 degrees Fahrenheit and field elevation is 192.3 feet above mean sea level. These respective reference points in the 75 percent of fleet mix and 100 percent fleet mix tables were utilized in determining the unadjusted runway length.

FIGURE 1 75 PERCENT FLEET MIX AT 60 AND 90 PERCENT USEFUL LOAD

Mean Daily Maximum Temperature of Hottest Month of the Year in Degrees Fahrenheit

75 percent of feet at 60 percent useful load

75 percent of feet at 90 percent useful load

Source: FAA AC 150/5325-4B, Runway Length Requirements for Airport Design

The blue line in Figure 1 represents the analysis completed as part of the master plan effort. The red line was included in the Advisory Circular for reference. Analysis of the 75 percent of fleet mix at 60 percent useful load resulted in a recommended runway length of 4,600 feet. Analysis of the 75 percent of fleet mix at 90 percent useful load resulted in a recommended runway length of 6,500 feet.

TABLE 5

75 PERCENT FLEET MIX UNADJUSTED RUNWAY LENGTH

Accommodated Fleet	60% Useful Load	90% Useful Load
75% (Figure 3-1)	4,600′	6,500′
Source: FAA AC 150/5325-48 Runway Length R	Requirements for Airport Design	

e: FAA AC 150/5325-4B, Runway Length Requirements for Airport Design

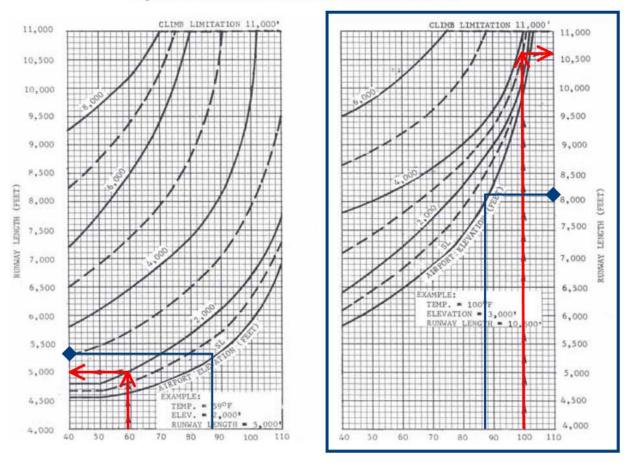


Figure 3-2. 100 Percent of Fleet at 60 or 90 Percent Useful Load

Mean Daily Maximum Temperature of Hottest Month of the Year in Degrees Fahrenheit

100 percent of feet at 60 percent useful load

100 percent of feet at 90 percent useful load

The blue line in Figure 2 represents the analysis completed as part of the master plan effort. The red line was included in the Advisory Circular for reference. Analysis of the 100 percent of fleet mix at 60 percent useful load resulted in a recommended runway length of 5,300 feet. Analysis of the 100 percent of fleet mix at 90 percent useful load resulted in a recommended runway length of 8,100 feet.

TABLE 6

100 PERCENT FLEET MIX UNADJUSTED RUNWAY LENGTH

Accommodated Fleet	60% Useful Load	90% Useful Load
100% (Figure 3-2)	5,300'	8,100′
Source: FAA AC 150/5325-4B. Runway Length	Requirements for Airport Design	

Source: FAA AC 150/5325-4B, Runway Length Requirements for Airport Design

1.2.5 Step 5 – Apply Necessary Adjustments

The final step to determine the required runway length is to apply any necessary adjustments to the runway lengths in Step 4. For the purposes of takeoff length, one adjustment must be applied to the unadjusted runway length. The runway gradient must be factored into the required runway length. To calculate the runway grade adjustment, both runway end elevations must be known. The runway lengths obtained from Step 4 are increased at a rate of 10 feet for each foot of elevation difference between the high and low points of the runway centerline. Based on the high and low points on Runway 16L-34R, the unadjusted lengths were increased by 150 feet.

TABLE 7 UNADJUSTED RUNWAY LENGTH

Large Airplanes between 12,500 Ibs and 60,000 lbs	Unadjusted Runway Length	Gradient Adjustment	Wet Conditions	
75% fleet mix at 60% useful load	4,600'	4,750'	5,463′	
75% fleet mix at 90% useful load	6,500′	6,650′	7,000′	
100% fleet mix at 60% useful load	5,300'	5,450'	5,550'	
100% fleet mix at 90% useful load	8,100′	8,250′	8,250′	

Note: The runway lengths obtained from Tables 3-1 and 3-2 are increased at a rate of 10 feet for each foot of elevation difference between the high and low points of the runway centerline. The runway length for turbojet-powered airplanes obtained from the "60 percent useful load" tables are increased by 15 percent or up to 5,500 feet, whichever is less for wet conditions. The runway lengths for turbojet-powered airplanes obtained from the "90 percent useful load" curves are increased by 15 percent or up to 7,000 feet, whichever is less for wet conditions.

Source: FAA AC 150/5325-4B, Runway Length Requirements for Airport Design

Based on both 75 percent and 100 percent fleet mix at 90% useful load, which are justified since there are over 500 operations in each category, HEF's primary runway is shorter than needed to adequately accommodate the critical aircraft users in both categories. To verify the analysis from the general curves and ensure a future extension is needed at HEF, a sample of individual aircraft manufacturer manuals for aircraft known to operate at HEF were reviewed for specific runway length needs. The required takeoff lengths and projected operations for the next five years are shown in **Table 8**.

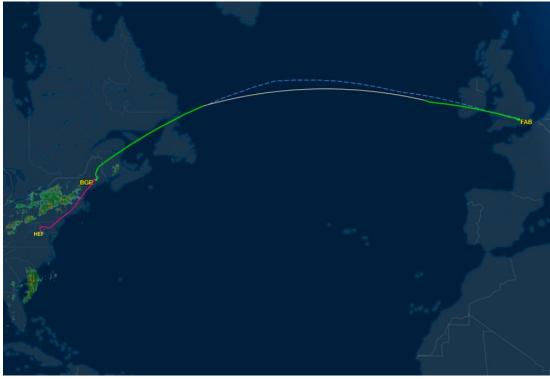
TABLE 8 CRITICAL DESIGN AIRCRAFT FOR RUNWAY LENGTH RECOMMENDATIONS

Aircraft Name	MTOW	Takeoff Length at HEF	Total Operations		
	(LBS)		2021	2026	2031
Embraer/ERJ-145	48,480	6,476'	4	9	14
Learjet 35	18,000	6,404'	32	39	49
Learjet 60	22,750	6,404'	246	287	334
Global 6000/Express	99,500	6,464'	30	35	45
Gulfstream 500	90,500	6,642'	80	95	112
Total				465	554
Note 1. Individual Airport Planning Manuals	referenced				

Note 1: Individual Airport Planning Manuals referenced Note 2: Airport Temperature: 87^o F

Note 3: Airport Elevation: 192.3' MSL

Note 4: Effective Runway Gradient: 150 ft


Additional details on the recommended runway length of 6,500 feet is provided in **Section 2.4 – Recommended Runway Length**.

1.3 CORRESPONDING VERIFICATION

1.3.1 Flight Tracking

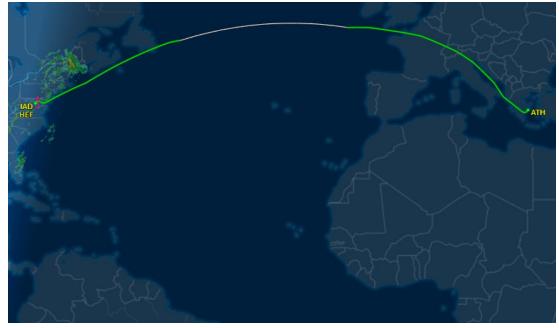

There is evidence of larger business jets repositioning to an airport with a longer runway prior to embarking on long-haul trips, indicative of MTOW. **Figure 3** depicts a trip by a Challenger 600 repositioning from HEF to Bangor International Airport (BGR) prior to flying over 3,150 nautical miles to Farnborough, England (FAB/EGLF). BGR has one runway with a length of 11,440 feet. Furthermore, **Figure 4** depicts a trip by a Gulfstream V repositioning from HEF to Washington Dulles (IAD) prior to flying over 4,500 nautical miles to Athens, Greece (ATH/LGAV). IAD has four runways with all runway lengths extending over 9,400 feet. Both flight operations occurred within the month of July and are indicative of summertime density altitudes resulting in restricted payloads.

FIGURE 3 CL60 TRIP: HEF TO BGR TO FAB/EGLF

Source: Flightaware.com

FIGURE 4 GLF5 TRIP: HEF TO IAD TO ATH/LGAV

Source: Flightaware.com

1.3.2 Operator Surveys

To support the need for the runway extension Airport staff conducted operator surveys of business jets to identify aircraft that have operated with restricted payloads or stopped to refuel due to the current runway length at HEF. Operators were asked to provide the number of annual operations to the best of their ability, however not all operations data was submitted to the Airport staff. Airport staff primarily focused survey efforts to the two FBOs and corporate tenants located on-airport. The results of the operator surveys are depicted in **Figure 5** and **Figure 6**.

	sas Regional Airport Runway Length S	urvey
1.	Please list the aircraft currently opera Airport, along with the aircraft's tail r • N256GG: CL-300 • N278PC: CL-300 • N949MC: CL-605 • N57MH: CL-605 • N686GD: G-650 • N614GG: CJ1 • N881JJ: G-450 • N881MJ: LR-45	ated by you or your company out of Manassas Regional number:
	 N26NG: PC-12 	
2.	What is the typical stage length (nm) listed above? • 1500-2000 NM average	flown out of Manassas Regional Airport for the aircraft
3.	What is the maximum stage length (nm) for the aircraft listed above? • 7500 NM	
4.	 Have you experienced constrained (i.e. reduced payload for takeoff) operations while operating out of Manassas Regional Airport? Please provide more details on those constraints: Yes- Summertime density altitudes restrict climb gradients for 16L/ 34R. Runway lengths restrict max fuel for Heavy category aircraft operated by Chantilly Air (G-650/ G-450). 	
5.	 payload for takeoff because of the cu Approximately 10-12 operaticurrent runway length. Partic 	tions at Manassas Regional Airport that required a reduced irrent runway length: ons a year have restricted payload for takeoff because of cularly in our Gulfstreams- international trip planning is acity for necessary climb gradient.
6.		te stop to refuel due to reduced payload constraints Airport? Please provide more details on these instances: I.
Please	provide your contact information in th	e event we have follow-up questions for you:
Name	Timothy Sullivan	Company: Chantilly Air, Inc.
	timsullivan@chantillyair.com	Phone: (571)370-9400

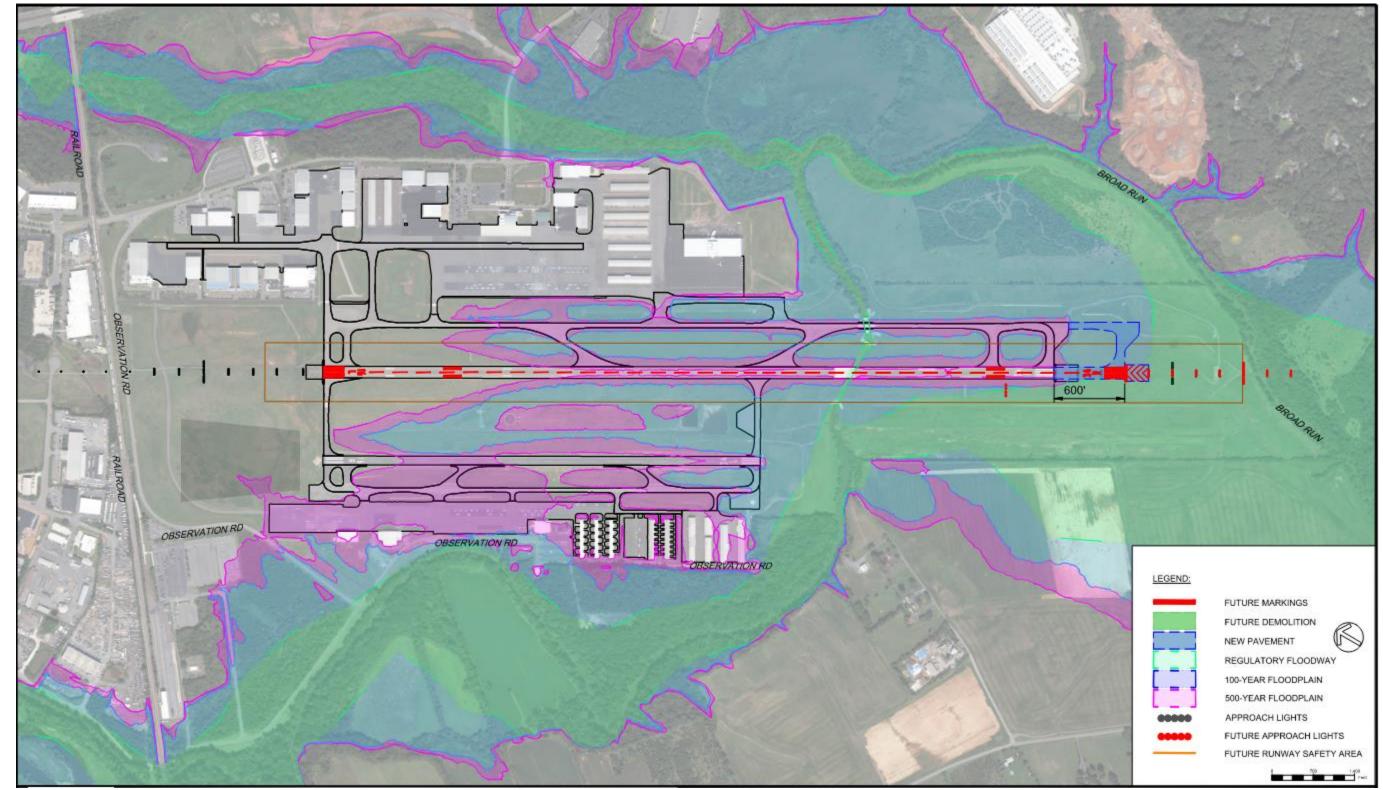
Source: HEF Operator Survey

FIGURE 6 FLIGHTWORKS – HEF RUNWAY LENGTH SURVEY

Mar	nassas Regional Airport Runway Length Sur	vey
	Please list the aircraft currently operated by along with the aircraft's tail number: Challer	you or your company out of Manassas Regional Airport, ager 605 N110CP
	What is the typical stage length (nm) flown or above? 1,000-3,000nm	out of Manassas Regional Airport for the aircraft listed
З.	What is the maximum stage length (nm) for	the aircraft listed above? 4,000nm
		ced payload for takeoff) operations while operating out le more details on those constraints: Yes, when it is hot of fuel or sometimes make a fuel stop.
	Identify the number of annual operations at payload for takeoff because of the current r	Manassas Regional Airport that required a reduced unway length: About 12 or so per year
	out of Manassas Regional Airport? Please pr	to refuel due to reduced payload constraints operating ovide more details on these instances: ircraft. I do not have specific trips that I remember at
	ase provide your contact information in the e	
	ne: Diego Bustamante ail: diegob7@gmail.com	Company: FlightWorks Phone: 240-505-1505
E-m	an. diegob/@gmail.com	Fridhe: 240-505-1505

Source: HEF Operator Survey

1.4 RECOMMENDED RUNWAY LENGTH


The recommended future runway length is 6,700 feet (500-foot extension) as this length allows for an extension while limiting impact to environmental resources in conjunction with allowing more business jets to operate out of HEF without payload restrictions. Data supporting the recommended runway length is detailed in this section.

After following guidance in Advisory Circular 150/5325-4B, Section 2.2.5 reveals a maximum runway length of 8,250 feet can be rationalized for Runway 16L-34R. A final length of 8,250 feet would require an extension of 2,050 feet to accommodate the 100 percent fleet mix at 90% useful load that are restricted from operating at MTOW under hot weather conditions. The presence of Observation Road and Broad Run impose limitations on the possible length and direction of a runway extension. Airspace to the north and HEF's location in relation to the Washington DC Metropolitan Special Flight Rule Area (SFRA), as detailed in *Working Paper 2*, constrains the direction of an extension. The primary length constraint is attributed to the proximity of the extended runway's Runway Safety Area (RSA) to the surface variations presented by Broad Run. An RSA is defined as an area surrounding the runway consisting of a prepared surface suitable for reducing the risk of damage to aircraft in the event of an undershoot, overshoot, or excursion from the runway. RSA's must be cleared and graded with no potentially hazardous ruts, humps, depressions, or other surface variations while being capable of supporting Snow Removal Equipment, ARFF equipment, and the occasional aircraft without causing major damage to the aircraft. Considering the need to minimize significant airspace impact to the north, **Figure 7** depicts the maximum runway extension which could exist without the proposed RSA being impacted by Broad Run.

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) encompassing the Airport, currently Runway 16L-34R sits within the 500-year floodplain while the 100-year floodplain and regulatory floodway fall just outside of the Runway 34R blast pad. Preliminary investigation of a maximum 600-foot extension to Runway 16L-34R indicates approximately 124,700 square feet of the extended pavement (runway, blast pad, and taxiway) would fall in the 100-year floodplain. Approximately 27,300 square feet of the extended pavement (runway and blast pad) would fall in the regulatory floodway with the 600-foot extension. Executive Order (EO) 11988, *Floodplain Management*, and EO 13690, *Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input*, requires federal agencies to avoid, to the extent possible, the long and short-term adverse impacts associated with the occupancy and modification of 100-year floodplains and to avoid direct or indirect support of floodway development where there is a practicable alternative.

Alternatively, a 500-foot extension to Runway 16L-34R was assessed since a runway length of 6,700 feet would accommodate a significant portion of business jets that have been payload restricted during hot weather conditions, reference **Table 8**, while limiting impacts to environmental resources. Although this alternative does impact environmental resources, it will have less environmental impact than a length of 6,800-feet. When considering the four principles of airport sustainability; Economic Viability, Operational Efficiency, Natural Resource Conservation, and Social Responsibility a runway length of 6,700 feet embodies the recommended and preferred runway length for Runway 16L-34R. A 6,700-foot runway meets the needs of 75 percent of the fleet at 90 percent useful load after gradient adjustments and all of

the 100 percent fleet mix at 60 percent useful load during the planning period while enhancing the level of service the airport provides to the flying public. The master plan Alternatives Chapter considered several established criteria and recommended a plan to meet the recommended runway length of 6,500-feet for Runway 16L-34R.

Source: RS&H Analysis

FIGURE 7

RUNWAY 16L-34R: 6,800 FT LENGTH